Грозные и «необыкновенные» явления в атмосфере


В воздушной оболочке Земли развиваются многообразные явления — грозные и величественные. Однако ничего чудесного и даже случайного в них нет. Ученые открыли причины таких явлений, как грозы, ураганы, смерчи, радуги, гало, миражи и т. д.

Некоторые явления воздушной стихии наносят иногда значительный ущерб народному хозяйству и приводят к человеческим жертвам. Поэтому советские люди используют науку и технику для защиты от вредных действий стихии и с каждым годом добиваются все новых успехов в покорении сил природы.

 

ГРОЗЫ

Грозой называются разряды атмосферного электричества в форме молний, сопровождаемые громом. Нет, кажется, более грозного и величественного явления в атмосфере, чем гроза. Особенно сильное впечатление производит гроза, когда она проходит над местом наблюдения,— как говорят, «прямо над головой», когда удар грома следует за ударом, одновременно с молнией, при ураганном ветре и сильном ливне.

Искусственная молния в лаборатории. Длина ее достигает 10—15 м. Это модель настоящей молнии, полученной при напряжении в несколько миллионов вольт.
Искусственная молния в лаборатории. Длина ее достигает 10—15 м. Это модель настоящей молнии, полученной при напряжении в несколько миллионов вольт.

Гром — это своего рода взрыв воздуха. Гром происходит от мгновенного расширения воздуха под влиянием очень высокой температуры молнии — около 20 000° — и последующего сжатия его от охлаждения.

Лишь в городах, в больших каменных зданиях, не ощущается вся сила грозы.

Ученые уже давно внимательно наблюдали и пытались изучить молнию. Электрическая природа молнии была раскрыта в исследованиях американского физика В. Франклина и М. В. Ломоносова.

Свою теорию Ломоносов изложил на заседании Академии наук в «Слове о явлениях воздушных, от электрической силы происходящих». Теория его в основном правильно объясняла, как накапливается атмосферное электричество. Причину этого явления Ломоносов видел в восходящих и нисходящих потоках неравномерно нагретого воздуха. От такого движения больших масс воздуха происходит трение частичек водяного пара, которые и заряжаются электричеством. Воздух — плохой проводник, но когда электричества в атмосфере накапливается очень много, то происходит искровой разряд в виде молнии. Молния проскакивает между облаком и землей или между двумя облаками, заряженными положительным и отрицательным электричеством (в XVIII в. уже знали, что оба вида электричества стремятся соединиться друг с другом). Ломоносов указал, что атмосфера содержит электричество и в ясную погоду, а в облаках оно скапливается в огромных количествах и образует молнии.

Линейная молния. Это огромная Электрическая искра длиной в несколько километров. Ее появление сопровождается оглушительным треском (громом).
Линейная молния. Это огромная Электрическая искра длиной в несколько километров. Ее появление сопровождается оглушительным треском (громом).

Как происходит накопление атмосферного электричества в облаках и разделение зарядов электричества на положительные и отрицательные, впервые обстоятельно изучили и объяснили русские ученые Н. А. Гезехус и его ученик М. С. Аганин в конце XIX в. Гезехус обратил внимание, что отлетающие от водопадов брызги воды заряжены отрицательным электричеством. То же получается и при искусственном разбрызгивании струи воды, а также при дроблении падающих капель дождя. Мелкие капли заряжаются отрицательно, а более крупные, нераздробленные капли — положительно.

Когда образуется мощное облако, дающее крупные капли дождя, сильные и неровные восходящие потоки воздуха в нижней части облака начинают разбрызгивать, дробить дождевые капли. Отколовшиеся наружные частички капель несут в себе отрицательный заряд, а оставшееся ядро оказывается заряженным положительно. Мелкие капли легко уносятся потоком воздуха вверх и заряжают верхнюю часть облака отрицательно; крупные капли скапливаются в нижних передних частях облака и заряжаются положительно. Чем крупнее облако и чем сильнее потоки воздуха, тем сильнее получается разряд. Удары молнии нередко вызывают пожары, разрушения зданий, порчу линий электропередачи, нарушают движение электропоездов.

Для успешной борьбы с вредным действием молнии необходимо «поймать» ее и тщательно изучить в лаборатории. Сделать это нелегко: ведь молния пробивает сильнейшую изоляцию и опыты с ней опасны. И тем не менее ученые блестяще справляются с этой задачей.

Для «улавливания» молнии в грозовые дни теперь выпускают воздушный шар с токоприемником и металлическим тросом на высоту до одного километра. Молния ударяет в токоприемник, направляется по тросу в лабораторию, проходит через записывающие приборы-автоматы, а потом уходит в землю. Автоматические приборы заставляют молнию как бы «расписаться» на бумаге. Таким образом, ученые измеряют напряжение и силу электрического тока в молнии, продолжительность электрического разряда и многое другое.

Чёточная молния — редкая форма молнии, переходная от линейной молнии к шаровой. Она похожа на траекторию трассирующей пули. Движение «чёток» молнии можно видеть невооруженным глазом.
Чёточная молния — редкая форма молнии, переходная от линейной молнии к шаровой. Она похожа на траекторию трассирующей пули. Движение «чёток» молнии можно видеть невооруженным глазом.

Оказалось, что молнии имеют напряжение в 50 и более миллионов вольт, а сила тока доходит до 200 тыс. ампер. Для сравнения укажем, что в линиях передач электрической энергии используются напряжения в десятки и сотни тысяч вольт, а сила тока выражается сотнями и тысячами ампер. Но количество электричества, заключенного в одной молнии, невелико, так как обычно продолжительность молнии исчисляется малыми долями секунды. Одной молнии хватило бы на питание только 100-свечовой лампочки в течение суток.

Придуманы и другие способы «поимки» молнии. В горных грозовых лабораториях устанавливают антенну длиной до одного километра между выступами гор или между горой и мачтами лаборатории. Молнии и ударяют в такие антенны.

Однако применение «улавливателей» заставляет ждать ударов молнии. А они ведь не так часты. Для исследований гораздо удобнее создавать искусственную молнию в лаборатории. При помощи специальной аппаратуры ученым удалось получить на короткое время напряжение электричества в 5 млн. вольт. Разряд электричества давал искры до 15 м длиной и сопровождался оглушительным треском. Такую искусственную молнию можно направлять на любой предмет и испытывать действие ее мощного разряда. Так, например, если искусственную молнию направить на автомобиль, сделанный целиком из металла, то она, пройдя через корпус машины по ободу переднего колеса (основная ведь масса металла — мотор — расположена впереди), уйдет в землю, не причинив никакого вреда машине.

Изучению молнии значительно помогает фотография. Получить фотографию молнии очень просто. В темную ночь направляют объектив фотоаппарата на грозовое облако и оставляют камеру открытой на некоторое время. После вспышки молнии объектив фотоаппарата закрывают, и снимок готов. Но такая фотография не сможет дать картины развития отдельных частей молнии, поэтому применяют киноаппарат. Необходимо, чтобы механизм киноаппарата при съемке вращался достаточно быстро (1000-1500 оборотов в минуту). Тогда на снимке проявятся отдельные части молнии; они позволят судить, в каком направлении и с какой скоростью развивался разряд.

Шаровая молния бывает величиной с кулак, человеческую голову, а иногда имеет несколько метров в диаметре. Взрыв ее причиняет сильные разрушения.
Шаровая молния бывает величиной с кулак, человеческую голову, а иногда имеет несколько метров в диаметре. Взрыв ее причиняет сильные разрушения.

Различают несколько видов молнии.

Плоская молния имеет вид общей электрической вспышки на поверхности облаков. Она может быть отблеском искровой молнии, не видимой за облаками, но может быть и самостоятельным разрядом в виде мерцающего света. Грозы, сопровождаемые только плоскими молниями, относятся к разряду слабых, и наблюдаются они обычно лишь ранней весной и поздней осенью.

Линейная молния представляет собой гигантскую электрическую искру, очень извилистую и с многочисленными отростками. Длина линейной молнии 2-3 км, но бывают молнии до 10 км и больше. Линейная молния обладает большой силой. Она расщепляет большие деревья, иногда поражает людей, а при ударе в деревянные строения часто вызывает пожары.

Чёточная молния имеет вид светящейся пунктирной линии, пробегающей на фоне облаков или от облаков к Земле. Это очень редкая форма молнии.

Развитие линейной молнии. Специальные фотокамеры позволили выяснить природу этой молнии. На рисунке показано развитие линейной молнии. Вначале виден слабый отблеск молнии; потом искра увеличивается и устремляется к земле. Наконец, яркая молния находит себе путь и ударяет в землю.
Развитие линейной молнии. Специальные фотокамеры позволили выяснить природу этой молнии. На рисунке показано развитие линейной молнии. Вначале виден слабый отблеск молнии; потом искра увеличивается и устремляется к земле. Наконец, яркая молния находит себе путь и ударяет в землю.

Ракетообразная молния развивается очень медленно, разряд ее продолжается 1-1,5 секунды. При такой длительной вспышке ночью можно видеть качание деревьев, вращение колес поезда и т. п.

Шаровая молния — наиболее редкая и загадочная форма молнии. Она состоит из круглой светящейся массы. В закрытом помещении наблюдали шаровую молнию величиной с кулак и даже с голову, а в свободной атмосфере — значительно больших размеров; до 10-20 м диаметром. Обычно шаровая молния исчезает бесследно, но иногда она разрывается со страшным треском и в некоторых случаях причиняет разрушения. При появлении шаровой молнии слышен свистящий или жужжащий звук; после исчезновения ее в воздухе часто остается дымка. Продолжительность шаровой молнии — от секунды до нескольких минут. Движение шаровой молнии связано с воздушными течениями, но в некоторых случаях она перемещается самостоятельно. Иногда шар в течение некоторого времени может стоять на месте, кипя и выбрасывая искры. Появление шаровых молний связано с сильными грозами. Полного объяснения шаровой молнии до настоящего времени ученые еще не нашли. Проф. П. Н. Чирвинский сделал предположение, что шаровая молния представляет собой клубок сильно наэлектризованной смеси газов — кислорода, водорода и азота. Кислород и водород образуются в атмосфере при разложении водяного пара под действием линейной молнии.

Наиболее частая и лучше всего изученная форма молнии — линейная. Она состоит из разрядного канала, по которому проходит ток. Появлению канала предшествует «лидер» — небольшой язык света, прокладывающий путь молнии в атмосфере. Если бы наш глаз мог так же быстро схватывать явления, как фотокамеры, то мы прежде всего увидели бы лидер, вытянувшийся метров на пятнадцать от облака по направлению к Земле. Через 0,001 секунды этот свет исчезает; затем язык появляется снова и вытягивается метров на тридцать; затем следует опять затухание, новое продвижение и т.д.; так продолжается до тех пор, пока язык не достигнет земли. В тот момент, когда лидер коснется земли, начнется вторая, или главная, часть удара — разряд. От облака к земле протянется гигантское пламя, повторяющее путь, пройденный лидером. Продолжительность молнии различная. Она колеблется от 0,001 до 0,02 секунды. Когда молнии повторяются по одному каналу, то свечение продолжается дольше — до 0,1-0,2 секунды. Ширина разрядного канала, по последним научным данным, не превышает 40-50 см. Температура в канале молнии доходит до 20 000°.

Сильные грозы обычно дают очень много молний. Так, во время одной грозы наблюдатель за 15 минут насчитал 1000 молний. Еще больше молний подсчитано было наблюдателями одной грозы в Африке: за один час — 7000 молний. Действие молнии различно. Были случаи, когда молния убивала людей; иногда она сжигала на человеке одежду, не причинив его организму серьезного вреда.

Во время сильной грозы один прохожий был контужен молнией. Кроме куска сапога и одного рукава рубашки, от его костюма ничего не осталось. Придя в себя, пострадавший был удивлен, что лежит совсем раздетый. В данном случае, видимо, человек был поражен не основной электрической искрой, а ответвлением молнии, которое много слабее главного разряда.

У людей, убитых молнией, иногда совсем не оказывается никаких заметных внешних повреждений.

Однажды во время сильной грозы шаровая молния проникла через печную трубу в дом. Молния подкатилась к ногам человека. Тот в страшном испуге отодвинул ноги; тогда молния поднялась на уровень лица. Человек отклонил голову насколько мог назад. Шар пошел к потолку, потом втянулся в трубу и там взорвался с такой силой, что провалилась крыша, а обломки трубы разлетелись по всему двору.

Молниеотвод на станциях высоковольтных линий электропередач.
Молниеотвод на станциях высоковольтных линий электропередач.

Разрушающее действие молнии особенно велико при поражении высоких кирпичных труб. В одном случае верхняя часть трубы длиной около 30 м была совершенно разрушена, следующие 15 м трубы развалены наполовину, а в нижней части получилась трещина. Куски кирпича отлетели на расстояние 200-300 м. Обвалившаяся труба проломила крышу здания.

Для предохранения зданий и других сооружений от молнии применяются громоотводы, или, как их теперь правильнее называют, молниеотводы. Молниеотвод — металлический стержень, соединенный с надежно заземленным проводом.

Такой способ впервые был предложен еще Михаилом Васильевичем Ломоносовым.

Знаменитый американский физик Вениамин Франклин, занимавшийся исследованиями атмосферного электричества, предполагал, что молниеотвод способен даже разрядить грозовое электричество и предотвратить образование молнии. Но Ломоносов доказал, что это не под силу и десятку молниеотводов.

Для защиты линий электропередач от молнии на верхушках мачт, несущих провода, устанавливается один или два провода, соединенных с металлическими мачтами. При ударе молния уходит по проводам и мачтам в землю. Но если молния ударит не в защитные провода, а поблизости, то, конечно, могут быть повреждения, так как в проводах, несущих ток, сильно повысится напряжение тока вследствие индукции и предохранители сгорят. Для избежания этого на линиях устанавливаются линейные трубчатые разрядники, которые имеют два искровых промежутка. При перенапряжениях на линии в разряднике проскакивает искра, которая ослабляет перенапряжение. На самих электростанциях устанавливают особый молниеотвод, изготовленный из специальных материалов — тирита и вилита. В обычное время молниеотвод играет роль изолятора. Но если от близкой молнии в сети возникает перенапряжение, тогда молниеотвод мгновенно становится как бы своеобразным предохранительным клапаном: он открывается и излишек напряжения направляет в землю.

Молниеотвод для защиты от ударов молнии. Он представляет собой металлический стержень, установленный на высоком столбе или на железной крыше здания. Стержень соединен с толстым проводом, уходящим в землю. Для лучшего рассеивания электричества провод в земле надежно соединяется с металлическим листом.
Молниеотвод для защиты от ударов молнии. Он представляет собой металлический стержень, установленный на высоком столбе или на железной крыше здания. Стержень соединен с толстым проводом, уходящим в землю. Для лучшего рассеивания электричества провод в земле надежно соединяется с металлическим листом.

Для защиты от молнии не следует становиться под деревьями, особенно одиноко стоящими и большими, так как молния часто ударяет в них. Особенно опасен в этом отношении дуб, потому что его корни глубоко уходят в грунт.

В открытом поле, особенно на возвышенных местах, при сильной грозе идущий человек подвергается большой опасности поражения молнией; в таких случаях рекомендуется сесть на землю и переждать грозу. Никогда не надо укрываться в стогах сена и снопах.

Перед началом грозы необходимо уничтожить сквозняки в помещении и закрыть все дымоходы. В сельских местностях не следует вести разговоры по телефону, особенно при сильных грозах. Обычно у нас сельские телефонные станции при сильной грозе прекращают соединения. Радиоантенны при грозе нужно всегда заземлять.

Если все же случится несчастье — кто-либо будет контужен молнией, — то необходимо немедленно принять меры скорой помощи (сделать искусственное дыхание, специальные вливания и т. п.).

Кое-где существует предрассудок, что пораженному молнией человеку можно помочь, закопав его тело в землю. Этим можно причинить вред, так как человек в таком состоянии особенно нуждается в усиленном притоке воздуха к телу.