Постоянный и переменный ток в технике


Гальванические элементы дают постоянный ток.
Гальванические элементы дают постоянный ток.

В наше время нет такой отрасли народного хозяйства, в которой не применялось бы электричество. И каждая из них предъявляет к электрическим машинам и аппаратам определенные требования, от которых зависит не только конструкция этих машин, но и род используемого тока. Хотя в технике и в промышленности широко используются и переменный и постоянный токи, области их применения весьма четко разграничены.

Впервые люди получили электрический ток от гальванических элементов. Эти элементы создавали в электрической цепи поток электронов, движущихся все время в одном определенном направлении. Такой ток получил название «постоянного».

Первые вращающиеся генераторы, электрические двигатели и приборы также работали на постоянном токе. И когда в конце прошлого столетия русский электротехник М. О. Доливо-Добровольский предложил применять трехфазный переменный ток, многие ученые отнеслись к этому с недоверием. Даже знаменитый американский электротехник Эдисон считал переменный ток выдумкой, не заслуживающей внимания. Однако очень скоро переменный ток стали использовать во многих областях электротехники. Электрические генераторы переменного тока создают в электрической цепи поток электронов, непрерывно изменяющий направление своего движения. Так, в цепи электрической лампочки, освещающей вашу комнату, электроны успевают за одну секунду 

Генераторы электрических станций вырабатывают переменный ток с частотой 50 пер/сек.
Генераторы электрических станций вырабатывают переменный ток с частотой 50 пер/сек.

100 раз изменить направление своего движения: 50 раз они движутся в одном направлении и 50 — в обратном. Про такой ток говорят, что он имеет частоту 50 периодов в секунду.

Эта особенность движения электронов придает переменному току целый ряд свойств, определивших его главенствующее положение в современной электротехнике.

Одно из важнейших свойств переменного тока — его способность к трансформации. Как мы знаем, передача электрической энергии на большие расстояния возможна только при очень высоком напряжении, достигающем 110, 220 и даже 500-800 тыс. в. Столь высокое напряжение нельзя получить непосредственно в генераторах. В то же время для различных электрических машин и аппаратов нужен электрический ток напряжением в несколько десятков или сотен вольт. Вот здесь-то и пригодилась его способность к трансформации,—  она позволила с помощью трансформаторов изменять напряжение переменного тока в любых пределах.

С помощью трансформаторов можно изменять напряжение переменного тока в любых пределах.
С помощью трансформаторов можно изменять напряжение переменного тока в любых пределах.

Мало того. Соединение обмоток генератора в трехфазную систему позволило получить трехфазный переменный ток. Это система трех переменных токов, которые имеют одинаковую частоту, но различаются по фазе на одну треть периода. Трехфазный ток обладает важными достоинствами. Во-первых, трехфазные линии электропередач выгоднее однофазных: по ним при той же затрате проводов и изоляции можно передать больше электрической энергии, чем при однофазном переменном токе. А во-вторых, благодаря свойству трехфазного переменного тока создавать вращающееся магнитное поле, удалось построить очень простые и надежные асинхронные электрические двигатели без коллектора и щеток.

Эти качества переменного тока и послужили причиной того, что в наши дни все промышленные электростанции вырабатывают только трехфазный переменный ток.

Больше половины электрической энергии, вырабатываемой этими электростанциями, расходуется электрическими двигателями. Чтобы они могли выполнять разнообразную работу, их делают различными и по устройству и по размерам.

Электрические двигатели позволили создать автоматические станочные линии.
Электрические двигатели позволили создать автоматические станочные линии.

Кроме простых асинхронных двигателей, которые широко используются для привода станков, есть двигатели с обмоткой и контактными кольцами на роторе. Они развивают большие усилия при трогании с места и поэтому успешно применяются на подъемных кранах. Есть еще синхронные двигатели, имеющие постоянную скорость вращения. По своим размерам электрические двигатели бывают маленькими — с катушку ниток — и огромными, как карусель.

Применение для привода станков сразу нескольких электрических двигателей дало возможность упростить механизмы станка, облегчило управление ими и позволило создать автоматические станочные линии.

Малые размеры электрических двигателей позволили использовать электрическую энергию там, где раньше применялся только ручной труд. Электрические дрели, пилы, рубанки и другой электрифицированный инструмент намного облегчили труд рабочих, сделали его более производительным.

Электрические полотеры, пылесосы, стиральные машины и холодильники пришли на помощь домашним хозяйкам.

Электрические дуговые и индукционные печи широко применяются в технике и промышленности. Небольшие печи сопротивления можно встретить в вагонах поездов, в троллейбусах и даже дома.
Электрические дуговые и индукционные печи широко применяются в технике и промышленности. Небольшие печи сопротивления можно встретить в вагонах поездов, в троллейбусах и даже дома.

Переменный ток — хороший источник тепла. В мощных дуговых электропечах плавят и варят металл. Электрические печи сопротивления широко используются для кондиционирования воздуха, обогрева сушильных шкафов и различных помещений.

Электрические лампочки дают свет независимо от того, какой ток идет через их нити. Но поскольку передача переменного тока более экономична, а трансформаторы позволяют легко поддерживать необходимое для них напряжение, вся осветительная сеть городов и сел обслуживается переменным током.

Непрерывное изменение направления движения электронов в переменном токе, его способность к трансформации открыли ему широкую дорогу во многие области техники. Но не всегда хорош ток, все время меняющий свое направление. Вот вы сели в троллейбус, поезд метро или в вагон «электрички» на железной дороге. Здесь вы попали во владения постоянного тока.

Дело в том, что простые и удобные электрические двигатели переменного тока не позволяют в широких пределах плавно менять скорость своего вращения. А вспомните, сколько раз водителю приходится изменять скорость движения троллейбуса; с такой беспокойной работой хорошо справляется только двигатель постоянного тока. Питание этих двигателей осуществляется с тяговых выпрямительных подстанций. Приходящий на них с электростанций переменный ток при помощи ртутных выпрямителей преобразуется в постоянный, а затем подается в контактную сеть — в провода и рельсы.

Применение тяговых двигателей постоянного тока на транспортных машинах оказалось настолько выгодным, что их можно встретить на тепловозах и теплоходах.

Их основными двигателями служат дизели, которые приводят в движение генераторы, вырабатывающие постоянный ток. А он в свою очередь заставляет работать электрические двигатели, вращающие колеса или гребные винты.

Однако высокая стоимость и сложность преобразовательных подстанций заставили ученых и инженеров задуматься над использованием переменного тока на транспорте. Сейчас уже есть участки железных дорог, использующие однофазный переменный ток. С успехом используют его и на многих дизель-электрических кораблях.

Для питания двигателей электровозов вдоль электрифицированной железной дороги устанавливаются тяговые выпрямительные подстанции, на которых переменный ток преобразуется в постоянный при помощи ртутных выпрямителей.
Для питания двигателей электровозов вдоль электрифицированной железной дороги устанавливаются тяговые выпрямительные подстанции, на которых переменный ток преобразуется в постоянный при помощи ртутных выпрямителей.

Дальнейшая электрификация железных дорог в нашей стране будет осуществляться преимущественно с использованием переменного тока напряжением 25 тыс. в. Этот ток будет превращаться в постоянный непосредственно на электровозах при помощи выпрямительных устройств.

Хорошие регулировочные способности электродвигателей постоянного тока позволили с успехом применить их также на подъемно-транспортных механизмах. На обычных кранах, которые вы видите на строительстве, работают двигатели переменного тока. Но на мощных подъемных кранах больших металлургических заводов устанавливают двигатели постоянного тока. Ведь здесь надо плавно поднимать и переносить огромные ковши с расплавленным металлом, разливать его в изложницы или подавать раскаленные болванки на прокатные станы.

Эти двигатели приводят в движение и механизмы гигантских шагающих экскаваторов.

В гальванических ваннах при помощи постоянного тока покрывают различные предметы тонким слоем никеля или хрома.
В гальванических ваннах при помощи постоянного тока покрывают различные предметы тонким слоем никеля или хрома.

Двигатели постоянного тока могут развивать очень большие скорости вращения — до 25 тыс. об/мин. Это позволяет получать большую мощность при очень небольших размерах двигателя. Поэтому они незаменимы в качестве моторов управления, применяемых на самолетах для поворотов рулей, элеронов и закрылков, для подъема и опускания шасси и других механизмов.

Неизменное направление движения электронов в цепи постоянного тока определило большую и важную область его применения, в которой переменный ток с ним соперничать не может. Речь идет об электролизе — процессе, связанном с прохождением тока через жидкие растворы — электролиты. Под воздействием постоянного тока, проходящего через электролит, он разлагается на отдельные элементы, которые осаждаются на определенных электродах — на аноде или катоде. Это свойство широко используется в цветной металлургии — для получения алюминия, магния, цинка, меди, марганца. В химической промышленности при помощи электролиза получают фтор, хлор, водород и другие вещества.

В гальванотехнике электролиз применяют для осаждения металла на поверхность различных изделий. Таким образом наносят защитные покрытия на металлические изделия (никелирование, хромирование), изготавливают металлические монументы, печатные формы и т. д. Гальванизацию применяют в медицине для лечения некоторых болезней.

Постоянное направление движения электронов помогает постоянному току соперничать с переменным в сварочном деле и некоторых видах освещения. При сварке постоянным током частички металла переносятся с электрода на изделие более правильно и шов получается качественнее, чем при сварке переменным током.

Зайдите на киностудию. Мощные дуговые кинопроекторы заливают светом съемочный павильон. На переменном токе дуга горит менее устойчиво, дает меньше света и издает гул, мешающий записи звука при киносъемке. Поэтому кинопрожекторы питают постоянным током, который дает бесшумную устойчивую дугу. В мощных военных прожекторах и дуговых кинопроекционных аппаратах также используется постоянный ток.

На киностудиях на постоянном токе работают мощные дуговые кинопрожекторы.
На киностудиях на постоянном токе работают мощные дуговые кинопрожекторы.

Чтобы получить переменный ток, нужно непрерывно вращать генератор переменного тока, а постоянный ток могут давать неподвижные аккумуляторные батареи или же гальванические элементы. Эти свойства источника электрического тока также в ряде случаев определяют область применения постоянного тока.

Автомобиль стоит на месте. Как завести его двигатель? К вашим услугам аккумуляторная батарея. Вы нажимаете кнопку стартера, и двигатель постоянного тока, получая питание от аккумуляторной батареи, заводит мотор. А когда мотор работает, он вращает генератор, который заряжает аккумулятор, восстанавливает израсходованную энергию. Такой обратимый процесс недоступен для переменного тока.

Что было бы, если бы в поездах освещение питалось переменным током? Остановился поезд — перестали вращаться колеса вагонов, а вместе с ним остановились бы электрические генераторы и свет в вагонах погас бы. Но этого не происходит, потому что под вагонами установлены генераторы постоянного тока, работающие параллельно с аккумуляторными батареями. Идет поезд — генераторы вращаются, дают энергию для освещения и одновременно заряжают батарею. Остановился состав — аккумуляторная батарея посылает ток в осветительную сеть.

Представьте себе, что на электростанции произошла авария: все турбо- или гидрогенераторы остановились и линии электропередачи, связывавшие ее с другими электростанциями, отключились. В таких случаях выручает постоянный ток, получаемый от больших аккумуляторных батарей. С его помощью приводят в движение вспомогательные механизмы, включают отключившиеся выключатели и снова пускают в работу главные турбо- или гидрогенераторы. Питание от аккумуляторной батареи очень надежно, поэтому все цепи защиты управления, автоматики и сигнализации на больших электростанциях работают на постоянном токе.

Аккумуляторные батареи применяются в различных областях техники.
Аккумуляторные батареи применяются в различных областях техники.

Может ли плавать подводная лодка без постоянного тока? На поверхности воды может. В этом случае ее гребные винты вращаются дизелями. Но под водой дизели останавливаются — не хватает воздуха. Там работает двигатель постоянного тока, получающий энергию от аккумуляторных батарей. Когда лодка вновь всплывает на поверхность и включаются в работу дизели, электрический двигатель превращается в генератор и вновь заряжает батареи.

В шахтах не везде можно подвесить контактный провод для электровозов. Как же им передвигаться? И тут опять выручает аккумуляторная батарея. На многих шахтах рудничные аккумуляторные электровозы доставляют уголь из самых отдаленных забоев. Электрические тележки с аккумуляторами — электрокары — вы часто видите на вокзалах. Они есть и в цехах больших заводов и фабрик.

Обратите внимание, как кинооператор снимает какое-нибудь важное событие. В руках у него легкий киносъемочный аппарат, а на поясе — аккумулятор. Нажал кнопку, и аппарат заработал. Такие легкие аккумуляторные батареи широко применяются для переносных радиостанций, сигнальных устройств, электрических измерительных приборов.

Конечно, перечисленными здесь примерами не исчерпываются все области применения электрической энергии. Мы ничего не рассказали о ее использовании для телеграфной и телефонной связи, для радио и телевидения и других целей — об этом вы прочтете в соответствующих статьях нашего сайта.