Алюминий


Только в самые последние полтора-два столетия, когда начала развиваться машинная техника, состоялось знакомство человека с алюминием. Серебристого цвета, очень редкий и добываемый с большими трудностями, он ценился сначала дороже золота. Его применяли лишь для дорогих украшений. Тогда еще трудно было предположить, что у этого металла большое будущее. И все же довольно скоро из рук ювелиров алюминий перешел к конструкторам и технологам.

Первую победу он завоевал в великом соревновании между многими материалами за право летать. Был момент, когда бурное развитие воздушной техники затормозилось из-за отсутствия легкого и достаточно прочного материала. Начались поиски. Дело решил алюминий. Его легкие и высокопрочные сплавы позволили увеличить скорость и дальность полета, поднять высоту и грузоподъемность самолетов. Недаром алюминий получил почетное название «крылатого металла».

Все это сделано из алюминия.
Все это сделано из алюминия.

Достоинства алюминия открыли ему широкую дорогу не только в авиацию, но и в автомобилестроение, электротехнику, химию, металлургию.

Однако не будь у алюминия могучих союзников — других металлов, он никогда не смог бы столь стремительно завоевать общее признание. Ведь прочность чистого алюминия в 10-12 раз ниже прочности стали. И только в соединении с другими металлами прочность его значительно возрастает.

Алюминиевые сплавы чрезвычайно разнообразны по своим свойствам и химическому составу. Один из распространенных сплавов — дюралюминий. Это сплав алюминия с 2,2-5,2% меди, 0,2-1,8% магния и 0,3-1,0% марганца. Дюралюминий — прекрасный конструкционный материал. По своим свойствам он близок к некоторым сортам мягкой стали, но легче ее почти в три раза. Он отлично поддается прокатке в листы, ленты, вытягивается в трубы, прессуется. Кроме того, со временем дюралюминий стареет, теряет свою пластичность и становится твердым и прочным. Для технологии это чрезвычайно ценное свойство. Пока он пластичен, из него можно изготовлять сложные детали, его можно гнуть, растягивать, ковать. Но через 7 дней (таков срок его старения) эти свойства теряются, детали становятся твердыми, прочными и не поддаются деформации.

Не менее распространен силумин — сплав алюминия с кремнием и незначительными добавками железа, марганца и магния. Силумин почти совсем не дает при остывании усадки. Это делает его незаменимым при отливке сложных деталей, когда наряду с легким весом необходима достаточная механическая прочность.

Это самые заслуженные сплавы, работающие уже не одно десятилетие. С ними начали успешно конкурировать созданные недавно новые алюминиевые сплавы. В основе их, кроме алюминия, по-прежнему лежат медь, магний и марганец, но в некоторые марки введены такие элементы, как хром, цинк, кремний. Из этих сплавов получают изделия различных профилей — ребристые панели и трубы, различные угольники, профили переменного сечения, полые профили самой разнообразной конфигурации. Их используют для декоративных целей в строительстве зданий, для ободов колес велосипедов, шестерен, кузовов грузовых автомобилей. Делают из них и детали большой прочности в мостовых конструкциях, решетчатые стойки в рыболовных судах, стрелы кранов. Из алюминиевых сплавов были сделаны очень многие детали искусственных спутников Земли и искусственной планеты.

В ближайшем будущем широкое применение получит пеноалюминий. Он очень легок, его удельный вес не превышает 0,5-0,6 Г/см³. Получают его так. В расплавленном алюминии растворяют соединения водорода с некоторыми металлами. При температуре 600-700° молекулы их распадаются и начинает бурно выделяться водород, пузырьки которого вспенивают алюминий. Затем алюминий быстро охлаждают, и он застывает в виде губчатой массы.

Так получают спек.
Так получают спек.

От окисления алюминий всегда имеет защитную броню. Пленка его окиси, в отличие от окислов других металлов, надежно предохраняет металл от дальнейшего разрушения. Она тонка, прочна, тверда и крепко связана с основным металлом — не отстает, если деталь скручивать, растягивать, сгибать. Если чистый алюминий плавится всего при 660°, то его окисленная пленка выдерживает огромные температуры — до 2050°! Стальные листы, покрытые тонким слоем окиси алюминия, надежно защищены от высоких температур и не окисляются. С помощью такой алюминиевой брони удалось создать жаростойкие детали для реактивных двигателей.

Алюминий хорошо проводит электрический ток. И хотя электропроводность его ниже электропроводности меди, делать из него провода выгоднее. Если делать медный и алюминиевый провода одинаковой длины и электропроводности, то диаметр алюминиевого провода будет больше медного в 1,3 раза, но вес его останется все же в 2 раза меньше медного.

При сгорании алюминиевого порошка выделяется огромное количество тепла, возникают высокие температуры, которых не выдерживают самые тугоплавкие металлы и их окислы. Это свойство используется в технике для получения металлов из их кислородных соединений. Такой способ называется алюминотермией. Широко применяют алюминий в быту. Из него делают тончайшую пленку — фольгу для упаковки шоколада, чая, табака; его используют для производства посуды, мебели и т. д.

Где же находят алюминий? Буквально всюду! Насчитывается более 250 различных минералов, содержащих этот металл: от самых разнообразных глин до драгоценных камней — голубых сапфиров и кроваво-красных рубинов. Но в чистом виде он в природе не встречается, так как это чрезвычайно активный элемент. По своей распространенности в земной коре алюминий — первый среди металлов.

Однако извлекают его пока лишь из ограниченного числа руд — бокситов, нефелинов, алунитов и каолинов. Причем из них добывается не чистый металл, а только его окись — глинозем, который и служит исходным сырьем для получения металлического алюминия.

Важнейшая алюминиевая руда — боксит. Это сложная горная порода, которая содержит не только соединения алюминия, но и других элементов — железа, кремния, титана, хрома и др. Качество боксита как алюминиевой руды определяется содержанием глинозема и окиси кремния. Чем меньше окиси кремния и больше глинозема, тем качество боксита выше. Но, кроме этого признака, необходима еще достаточная «вскрываемость» боксита, т. е. легкость извлечения из него глинозема.

Цена 1 Т металла

Чтобы получить 1 Т чугуна, достаточно добыть и переработать 2-2,5 Т железной руды. Для выплавки 1 Т меди расходуется уже 70-100 Т руды. 1 Т золота извлекают в среднем из 100 и более тысяч тонн породы.

А для добычи 1 Т радия потребовалось бы переработать до 500 млн. Т руды.

— Наверное, для добычи радия расходуется очень много энергии? — подумаете вы — и ошибетесь. Расход энергии на добычу 1 Т радия колоссален, но мировая добыча его за год не достигает и килограмма. А вот на выплавку алюминия каждый год в мире расходуется чуть ли не 100 млрд. квт-ч электроэнергии.

Для сравнения укажем, что годовая выработка такой мощной станции, как Волжская ГЭС им. В. И. Ленина, составляет «всего» 10,8 млрд. квт-ч.

Другая порода, содержащая много алюминия, — нефелин. Он входит в состав апатито-нефелиновых пород, которые долгое время использовались только для производства фосфорных удобрений. При разделении этих пород на апатит и нефелин первый шел на переработку, а второй — в отходы. Но в последние годы группа советских инженеров разработала и освоила промышленный способ комплексной переработки апатито-нефелиновых пород, и нефелины стали ценным сырьем для алюминиевой промышленности. Из таких руд и получают чистый глинозем. Чистым он должен быть потому, что в дальнейшем процессе при электролизе — молекулы окиси алюминия будут расщепляться. И если при этом в основном сырье окажутся примеси, обладающие большей активностью, чем алюминий, то все они перейдут в металл. А из алюминия такие примеси удалить еще труднее, чем из глинозема.

Из бокситов чистую окись алюминия в настоящее время получают в основном при помощи щелочного способа. Сначала боксит дробят. Затем обрабатывают раствором щелочи — едкого натра или едкого калия. Получается масса в виде пульпы, которую подают в автоклавы — металлические герметически закрытые цилиндры. После загрузки в автоклав пускают пар, который перемешивается с пульпой и нагревает ее. При этом давление в автоклаве повышается до 8-12 атм. Затем обработанную паром пульпу выгружают и разбавляют водой.